
Remote Health Monitoring System

Introduction
The IoT device constantly collects data from the user and sends it to smartphone via a
Bluetooth communication module. All the processing and data analysis take place in the
application where the user has the option to view user real-time plots. These plots provide the
user a basic idea of his/her body’s status. The user does not have maintained a record of
his/her data to ensure that s/he is in a healthy or unhealthy state since the application’s job is
to alert the user upon an emergency. Finally, when the algorithm senses an abnormality it
immediately alerts the user.

System Architecture

What we have in mind

After soldering all the hardware components on the PCB board, we design the system using
Velcro strips to make it wearable.

Hardware
The initial prototype system consists of a low power Bluetooth chip, an Arduino or any other
ADC platform chip, a pulse sensor(ECG), and a temperature sensor

Reading analogue signals from the pulse and temperature sensors and create a data packet to
convert the signals into digital form. Subsequently, it sends those packets to the phone as a
response to the data sending request. It also manages the Bluetooth communication by
coordinating with the RN42 Bluetooth chip.

The data read from the sensors is always an analogue value between 0 and 5 volts since that
is the operating voltage of this microcontroller. The Arduino then maps those voltage values
to digital values ranging from 0 to 1023. Since the y-axis for ECG signals is also a voltage,
all we had to do is scale the digital values to back voltage.

Basically, we read the sensor value from the Arduino through analogue pin 0 and then
multiply it by 5 and divide it by 1023 to get the correct voltage value. This only applies to the
pulse sensor since the expected output from the temperature sensor is in degrees Celsius.

To avoid the inaccuracy in simultaneous reading from multiple analogue pins, we not only
need a delay between each reading, but also need to read from the same analogue pin
_____times. We read the temperature data from the sensor twice and send the second reading,
then do the same for the pulse sensor. We need to send different symbols before the sensor
readings to be able to parse the data at the receiving end (android application). Before
sending a temperature reading we send a ‘/’ and before sending a pulse reading we send a ‘-’,
which makes data parsing simple.

Software
Given that the body temperature does not undergo as many changes as the ECG signal, we
increased the ECG’s sampling rate by decreasing the temperature’s sampling rate. We fixed
the sampling rates for the temperature sensor and the ECG signal at __ Hz and ___ Hz

Temperature Data

Novel Analytic Methods Needed for Real-Time Continuous Core Body
Temperature Data
Temperature does not need much analysis except for converting the data points to the time
main and smoothing the signal for better visual representation. The “noisiness” in
temperature signal indicates a need for smoothing

ECG data
Collecting data for various day to day situations like sitting, walking, and running. By using treadmill for
approaches other than sitting.
We take ECG and corresponding HR(after applying some transformation technique for accurate reading).
Also, the variations that occur as a result of the sensor while doing some activity should be taken into
account.

Data Analysis Techniques

• Noise Reduction: Filtering
• Baseline Wander Removal and Removal of High-Frequency Component:

Baseline wander is a problem that shows ECG signals in a wavy fashion rather than
being more of a constant envelope. A high pass filter to the signal improves the
“look” of the signal because it removes the low frequency component that manifests
itself as a sine-like pattern of the baseline. Removing the baseline wander gives a
better signal which can help us process data more accurately.

Time domain operation of a low pass filter for signals is the mathematical operation called
the moving average (often addressed to as smoothing).

Here is w the cut-off frequency and is N the filter order:

Smoothing of ECG signal: (General or p-shift)UFIR smoothing Filtering

• ECG Signal Denoising on Adaptive Horizons

Next step would be Feature Extraction
Referred:

https://arxiv.org/ftp/arxiv/papers/1005/1005.0957.pdf

1. A feature extraction method using Discrete Wavelet Transform (DWT) to extract the
relevant information from the ECG input data in order to perform the classification
task

In the feature extraction module the Wavelet Transform (DWT) is designed to
address the problem of non-stationary ECG signals. It was derived from a single
generating function called the mother wavelet by translation and dilation
operations. Using DWT in feature extraction may lead to an optimal frequency
resolution in all frequency ranges as it has a varying window size, broad at lower

frequencies, and narrow at higher frequencies. The DWT characterization will
deliver the stable features to the morphology variations of the ECG waveforms.

2. Based on HR:
We extracted heart rate or Beats per Minutes (BPM) from collected ECG signals. We
can calculate BPM using several techniques:

• taking the number of QRS peaks in a given time
• using autocorrelation: signal is correlated with a shifted copy of itself as a

function of delay or lag. Correlation indicates the similarity between
observations as a function of the time lag between them.
Formula:

• using Fourier transform: The Fourier transform extracts the frequencies

and harmonics of the signal. So, we find the location of the maximum
harmonic in the frequency plot.

3. R-R intervals:
The RR interval, the time elapsed between two successive R waves of the QRS
signal on the electrocardiogram (and its reciprocal, the HR), is a function of
intrinsic properties of the sinus node as well as autonomic influences. For normal
ECG signals, the R-R intervals do not fluctuate or suddenly change in a drastic
manner.

4. ST segments:
The ST segment is the flat, isoelectric section of the ECG between the end of the
S wave (the J point) and the beginning of the T wave. The ST Segment represents
the interval between ventricular depolarization and repolarization

The most important cause of ST segment abnormality (elevation or
depression) is myocardial ischaemia or infarction. Also, elevated ST segments
are one of the biggest indicators of heart attacks

Algorithm:
 Many approaches available:
 Classification of ECG N second window(can be treated as image classification
problem)

(CNN(ReLU activation) dense layers + LSTM)+RNN(Recurrent Neural Network)
LSTM: Used for learning existing trend in the signals
RNN: For temporal data analysis

First steps is to read data from the sensors at _ Hz from temperature and __ Hz from
ECG data.

We then maintain a sampling window of N seconds on which to perform all
computations. After selecting the sample window, we reduce the noise by applying the
filtering techniques discussed in Section

After removing all the noise components from the signals, we extract the three features from
the ECG and pass on those features along with the temperature data to our prediction
algorithm. If the results from the algorithm indicate that the current sample window is
normal, the window shifts by n second and takes the next N seconds of data. If the algorithm
detects an abnormality, it immediately warns the user. Using a moving window of n second
creates the need more computation but it provides faster and more accurate feature extraction
and prediction results. This means the next sample window will have n second of new data
and N seconds of data from the previous sample window.

For every windows cardiac Arrest Risk Score will be calculated and deviation from previous
measurements will be calculated.

For 5secs
moving
window

The algorithm above uses the decision tree as a prediction algorithm. However, using a
Neural network gives a more accurate prediction.

Reference:
https://d1wqtxts1xzle7.cloudfront.net/32129879/IJERTV1IS8282-with-cover-
page.pdf?Expires=1622291700&Signature=LPFANApF7Pd9k5GQwmSBYS8bWtItKsOHsD-
uNzvSMQ8f4tVgOLuvHtpkeleFrj-
QpasAUlbjp~sw0mEf9YTrf6dEDEwhx9vh9Ib32YdiOatOL8l7VgEmTygpQP8W-hKYA4nv5zAnY-
IJrHsSRtQnlkDwoqiVe87nz0cTbinlAMn~ngZFdH-DMBhRmfXfcTiaZdYgfnLq4rgab6B94-
pK9HEEB6N1DGL~U6z25KUopLF~H~1Y6hX-
d~iOC9ITmMS1zOa1IZ7m8qgbo5Uqxh13T2F2BDb-
rOOZ655LjJtuloKNuL65hVwE0zgONqJeXXRt3G6e5C3uIXBwKdSmXMvQbw__&Key-Pair-
Id=APKAJLOHF5GGSLRBV4ZA

The MorphNet Algorithm

MorphNet iteratively shrinks and expands a network, shrinking via a resource-
weighted sparsifying regularizer on activations and expanding via a uniform
multiplicative factor on all layers. It is a method to reduce the model size.

Background:
We consider deep feed-forward neural net-works, typically composed of a stack
of convolutions, biases, fully-connected layers, and various pooling layers, and in
which the output is a vector of scores. In the case of classification, the final vector
contains one score per each class. We number the parameterized layers of the
DNNL=1,...,M+1. Each layer L corresponds to a convolution or fully-connected
layer and has an input width IL and output width OL associated with it. In the case
of a convolutional layer, IL, OL correspond to the number of input and output
channels, respectively, andOL−1=IL for most networks without concatenating
residual connections. We consider L=M+ 1 to be the last layer of the neural
network. Thus OM+1 is the size of the final output vector.

The neural network is trained to minimize a loss: , where θ is the
collective parameters of the neural network and L is a loss measuring a
combination of how well the neural network fits the data and any additional
regularization terms (e.g.,L2 regularization on weight matrices).

Method:
We motivate our approach by first presenting a naive solution to

 the width multiplier.

Let ω·O1:M = {bωO1c, ..., bωOMc} for ω>0.
Observe that ω<1 results in a shrunk network and ω >1 results in an expanded
network. To solve Eq. (2) one may perform the following process:

1. Find the largest ω such that F(ω·O◦1:M) ≤ ζ.

2. Returnω·O◦1:M.

Reference:
https://arxiv.org/pdf/1711.06798.pdf

Another way to reduce the model size is to prune the Neural Network as in this reference
https://news.mit.edu/2020/foolproof-way-shrink-deep-learning-models-0430

Pruning a Neural Network refers to the compression of neural networks by removing
parameters.

For more info, refer to this
https://proceedings.neurips.cc/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-
Paper.pdf

