
Remote Health Monitoring System 

 

Introduction 
The IoT device constantly collects data from the user and sends it to smartphone via a 
Bluetooth communication module. All the processing and data analysis take place in the 
application where the user has the option to view user real-time plots. These plots provide the 
user a basic idea of his/her body’s status. The user does not have maintained a record of 
his/her data to ensure that s/he is in a healthy or unhealthy state since the application’s job is 
to alert the user upon an emergency. Finally, when the algorithm senses an abnormality it 
immediately alerts the user. 
 
 

System Architecture 

 

What we have in mind 

After soldering all the hardware components on the PCB board, we design the system using 
Velcro strips to make it wearable. 



Hardware 
The initial prototype system consists of a low power Bluetooth chip, an Arduino or any other 
ADC platform chip, a pulse sensor(ECG), and a temperature sensor 
 

 

 
Reading analogue signals from the pulse and temperature sensors and create a data packet to 
convert the signals into digital form. Subsequently, it sends those packets to the phone as a 
response to the data sending request. It also manages the Bluetooth communication by 
coordinating with the RN42 Bluetooth chip. 

The data read from the sensors is always an analogue value between 0 and 5 volts since that 
is the operating voltage of this microcontroller. The Arduino then maps those voltage values 
to digital values ranging from 0 to 1023. Since the y-axis for ECG signals is also a voltage, 
all we had to do is scale the digital values to back voltage. 

Basically, we read the sensor value from the Arduino through analogue pin 0 and then 
multiply it by 5 and divide it by 1023 to get the correct voltage value. This only applies to the 
pulse sensor since the expected output from the temperature sensor is in degrees Celsius. 

To avoid the inaccuracy in simultaneous reading from multiple analogue pins, we not only 
need a delay between each reading, but also need to read from the same analogue pin 
_____times. We read the temperature data from the sensor twice and send the second reading, 
then do the same for the pulse sensor. We need to send different symbols before the sensor 
readings to be able to parse the data at the receiving end (android application). Before 
sending a temperature reading we send a ‘/’ and before sending a pulse reading we send a ‘-’, 
which makes data parsing simple. 

 
 
 
 
 
 
 
 
 
 



Software 
Given that the body temperature does not undergo as many changes as the ECG signal, we 
increased the ECG’s sampling rate by decreasing the temperature’s sampling rate. We fixed 
the sampling rates for the temperature sensor and the ECG signal at __ Hz and ___ Hz 
 
Temperature Data 

Novel Analytic Methods Needed for Real-Time Continuous Core Body 
Temperature Data 
Temperature does not need much analysis except for converting the data points to the time 
main and smoothing the signal for better visual representation. The “noisiness” in 
temperature signal indicates a need for smoothing 
  
 
ECG data 
Collecting data for various day to day situations like sitting, walking, and running. By using treadmill for 
approaches other than sitting. 
We take ECG and corresponding HR(after applying some transformation technique for accurate reading). 
Also, the variations that occur as a result of the sensor while doing some activity should be taken into 
account. 
  
Data Analysis Techniques 

• Noise Reduction: Filtering  
• Baseline Wander Removal and Removal of High-Frequency Component:     

 
Baseline wander is a problem that shows ECG signals in a wavy fashion rather than 
being more of a constant envelope. A high pass filter to the signal improves the 
“look” of the signal because it removes the low frequency component that manifests 
itself as a sine-like pattern of the baseline. Removing the baseline wander gives a 
better signal which can help us process data more accurately. 

 
Time domain operation of a low pass filter for signals is the mathematical operation called 
the moving average (often addressed to as smoothing). 

 
  
Here is w the cut-off frequency and is N the filter order: 

 
 
 
 
 
 
 
 
 
 
 

 
Smoothing of ECG signal: (General or p-shift)UFIR smoothing Filtering 



 
• ECG Signal Denoising on Adaptive Horizons 

 
 
Next step would be Feature Extraction 
Referred: 

https://arxiv.org/ftp/arxiv/papers/1005/1005.0957.pdf 
 
 

1. A feature extraction method using Discrete Wavelet Transform (DWT) to extract the 
relevant information from the ECG input data in order to perform the classification 
task 

 
In the feature extraction module the Wavelet Transform (DWT) is designed to 
address the problem of non-stationary ECG signals. It was derived from a single 
generating function called the mother wavelet by translation and dilation 
operations. Using DWT in feature extraction may lead to an optimal frequency 
resolution in all frequency ranges as it has a varying window size, broad at lower 



frequencies, and narrow at higher frequencies. The DWT characterization will 
deliver the stable features to the morphology variations of the ECG waveforms. 
 
 
 
 

2.  Based on HR: 
We extracted heart rate or Beats per Minutes (BPM) from collected ECG signals. We 
can calculate BPM using several techniques: 

• taking the number of QRS peaks in a given time 
• using autocorrelation: signal is correlated with a shifted copy of itself as a 

function of delay or lag. Correlation indicates the similarity between 
observations as a function of the time lag between them. 
Formula: 

 
• using Fourier transform: The Fourier transform extracts the frequencies 

and harmonics of the signal. So, we find the location of the maximum 
harmonic in the frequency plot. 
 

 

 
 

3. R-R intervals: 
The RR interval, the time elapsed between two successive R waves of the QRS 
signal on the electrocardiogram (and its reciprocal, the HR), is a function of 
intrinsic properties of the sinus node as well as autonomic influences. For normal 
ECG signals, the R-R intervals do not fluctuate or suddenly change in a drastic 
manner. 

4. ST segments: 
The ST segment is the flat, isoelectric section of the ECG between the end of the 
S wave (the J point) and the beginning of the T wave. The ST Segment represents 
the interval between ventricular depolarization and repolarization 

 
The most important cause of ST segment abnormality (elevation or 
depression) is myocardial ischaemia or infarction. Also, elevated ST segments 
are one of the biggest indicators of heart attacks 



 
Algorithm: 
 Many approaches available: 
 Classification of ECG N second window(can be treated as image classification 
problem) 
 
(CNN(ReLU activation) dense layers + LSTM)+RNN(Recurrent Neural Network) 
LSTM: Used for learning existing trend in the signals  
RNN: For temporal data analysis 

 
  

First steps is to read data from the sensors at _ Hz from temperature and __ Hz from 
ECG data. 

We then maintain a sampling window of  N seconds on which to perform all 
computations. After selecting the sample window, we reduce the noise by applying the 
filtering techniques discussed in Section 

 
After removing all the noise components from the signals, we extract the three features from 
the ECG and pass on those features along with the temperature data to our prediction 
algorithm. If the results from the algorithm indicate that the current sample window is 
normal, the window shifts by n second and takes the next N seconds of data. If the algorithm 
detects an abnormality, it immediately warns the user. Using a moving window of n second 
creates the need more computation but it provides faster and more accurate feature extraction 
and prediction results. This means the next sample window will have n second of new data 
and N seconds of data from the previous sample window. 
 
For every windows cardiac Arrest Risk Score will be calculated and deviation from previous 
measurements will be calculated. 
  



 
For 5secs 
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window 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The algorithm above uses the decision tree as a prediction algorithm. However, using a 
Neural network gives a more accurate prediction. 
 

 
 
 



Reference: 
https://d1wqtxts1xzle7.cloudfront.net/32129879/IJERTV1IS8282-with-cover-
page.pdf?Expires=1622291700&Signature=LPFANApF7Pd9k5GQwmSBYS8bWtItKsOHsD-
uNzvSMQ8f4tVgOLuvHtpkeleFrj-
QpasAUlbjp~sw0mEf9YTrf6dEDEwhx9vh9Ib32YdiOatOL8l7VgEmTygpQP8W-hKYA4nv5zAnY-
IJrHsSRtQnlkDwoqiVe87nz0cTbinlAMn~ngZFdH-DMBhRmfXfcTiaZdYgfnLq4rgab6B94-
pK9HEEB6N1DGL~U6z25KUopLF~H~1Y6hX-
d~iOC9ITmMS1zOa1IZ7m8qgbo5Uqxh13T2F2BDb-
rOOZ655LjJtuloKNuL65hVwE0zgONqJeXXRt3G6e5C3uIXBwKdSmXMvQbw__&Key-Pair-
Id=APKAJLOHF5GGSLRBV4ZA 
 
   

 
 

The MorphNet Algorithm 
 
MorphNet iteratively shrinks and expands a network, shrinking via a resource-
weighted sparsifying regularizer on activations and expanding via a uniform 
multiplicative factor on all layers. It is a method to reduce the model size. 
 
Background: 
We consider deep feed-forward neural net-works, typically composed of a stack 
of convolutions, biases, fully-connected layers, and various pooling layers, and in 
which the output is a vector of scores. In the case of classification, the final vector 
contains one score per each class. We number the parameterized layers of the 
DNNL=1,...,M+1. Each layer L corresponds to a convolution or fully-connected 
layer and has an input width IL and output width OL associated with it. In the case 
of a convolutional layer, IL, OL correspond to the number of input and output 
channels, respectively, andOL−1=IL for most networks without concatenating 
residual connections. We consider L=M+ 1 to be the last layer of the neural 
network. Thus OM+1 is the size of the final output vector. 
 

The neural network is trained to minimize a loss: , where θ is the 
collective parameters of the neural network and L is a loss measuring a 
combination of how well the neural network fits the data and any additional 
regularization terms (e.g.,L2 regularization on weight matrices). 
 
Method: 
We motivate our approach by first presenting a naive solution to  

     the width multiplier.  
 
Let ω·O1:M = {bωO1c, ..., bωOMc} for ω>0.  
Observe that ω<1 results in a shrunk network and ω >1 results in an expanded 
network. To solve Eq. (2) one may perform the following process: 
 



1. Find the largest ω such that F(ω·O◦1:M) ≤ ζ. 
 
2. Returnω·O◦1:M. 
 

 
 
 
Reference: 
https://arxiv.org/pdf/1711.06798.pdf 
 
Another way to reduce the model size is to prune the Neural Network as in this reference 
https://news.mit.edu/2020/foolproof-way-shrink-deep-learning-models-0430 
 
Pruning a Neural Network refers to the compression of neural networks by removing 
parameters. 
 
For more info, refer to this 
https://proceedings.neurips.cc/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-
Paper.pdf 


